Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 482-489, 2020.
Article | WPRIM | ID: wpr-830964

ABSTRACT

G protein-coupled receptor kinase 5 (GRK5) has been considered as a potential target for the treatment of heart failure as it has been reported to be an important regulator of pathological cardiac hypertrophy. To discover novel scaffolds that selectively inhibit GRK5, we have identified a novel small molecule inhibitor of GRK5, KR-39038 [7-((3-((4-((3-aminopropyl)amino)butyl)amino)propyl)amino)-2-(2-chlorophenyl)-6-fluoroquinazolin-4(3H)-one]. KR-39038 exhibited potent inhibitory activity (IC 50 value=0.02 µM) against GRK5 and significantly inhibited angiotensin II-induced cellular hypertrophy and HDAC5 phosphorylation in neonatal cardiomyocytes. In the pressure overload-induced cardiac hypertrophy mouse model, the daily oral administration of KR-39038 (30 mg/kg) for 14 days showed a 43% reduction in the left ventricular weight. Besides, KR-39038 treatment (10 and 30 mg/kg/ day, p.o.) showed significant preservation of cardiac function and attenuation of myocardial remodeling in a rat model of chronic heart failure following coronary artery ligation. These results suggest that potent GRK5 inhibitor could effectively attenuate both cardiac hypertrophy and dysfunction in experimental heart failure, and KR-39038 may be useful as an effective GRK5 inhibitor for pharmaceutical applications.

2.
Mycobiology ; : 188-193, 2005.
Article in English | WPRIM | ID: wpr-729822

ABSTRACT

Twenty nine samples of pigeon droppings (n = 12) and soil contaminated with avian excreta (n = 19), collected from different sites in Busan, were examined for isolation and characterization of Cryptococcus neoformans. Of these samples, 5 strains of C. neoformans were recovered from pigeon droppings (5/12 : 41.7%). All isolates were belonged to C. neoformans var. grubii (serotype A). The extracellular enzyme activities of the strains by using the API-ZYM system showed two different enzymatic patterns. The genetic variability among C. neoformans isolates was analyzed by random amplified polymorphic DNA (RAPD) using three 10-mer primers. Two different RAPD patterns, which clearly distinguished the isolates, were identified. Analysis of RAPD patterns provided a good characterization of environmental strains of C. neoformans serotype A as a heterogeneous group and were in good agreement with enzymatic profiles.


Subject(s)
Columbidae , Cryptococcus neoformans , Cryptococcus , DNA , Soil
SELECTION OF CITATIONS
SEARCH DETAIL